如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ∠ A = 60 ° ,点 D 为 AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G , ∠ CDE 的平分线 DM 交 BC 于点 H .
(1)如图1,若 α = 90 ° ,则线段 ED 与 BD 的数量关系是 , GD CD = ;
(2)如图2,在(1)的条件下,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE .
①试判断四边形 CDEF 的形状,并说明理由;
②求证: BE FH = 3 3 ;
(3)如图3,若 AC = 2 , tan ( α - 60 ° ) = m ,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE ,请直接写出 BE FH 的值(用含 m 的式子表示).
化简求值:[(x+y)(x-y)-(x-y)2+2y(x-y)]÷(-2y),其中x=-,y=2.
分解因式:(x-y)2+4xy
分解因式:2x5-32x;
如图,直线:与直线:相交于点,直线与轴交于点,平行于轴的直线分别交直线、直线于、两点(点在的左侧) ⑴点的坐标为; ⑵如图1,若点在线段上,在轴上是否存在一点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,说明理由; ⑶如图2.若以点为直角顶点,向下作等腰直角,设与重叠部分的面积为,求与的函数关系式;并注明的取值范围.
如图1,等腰,,,为外部一点,在的右侧作,且 ⑴探究线段、和的数量关系; ⑵若将“”改为“”,⑴中的结论是否还成立?若成立,给出证明;若不成立,给出正确的结论,并简要说明理由.