如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ∠ A = 60 ° ,点 D 为 AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G , ∠ CDE 的平分线 DM 交 BC 于点 H .
(1)如图1,若 α = 90 ° ,则线段 ED 与 BD 的数量关系是 , GD CD = ;
(2)如图2,在(1)的条件下,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE .
①试判断四边形 CDEF 的形状,并说明理由;
②求证: BE FH = 3 3 ;
(3)如图3,若 AC = 2 , tan ( α - 60 ° ) = m ,过点 C 作 CF / / DE 交 DM 于点 F ,连接 EF , BE ,请直接写出 BE FH 的值(用含 m 的式子表示).
若,求的值。
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值. (1)尝试探究: 在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________, CG和EH的数量关系是________,的值是________. (2)类比延伸: 如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程. (3)拓展迁移: 如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).
如图,AC是⊙O的直径,弦BD交AC于点E. (1)求证:△ADE∽△BCE; (2)如果AD2=AE·AC,求证:CD=CB.
如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G. (1)求证:△BDG∽△DEG; (2)若EG·BG=4,求BE的长.
如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G. 求证:(1)CG=BH, (2)FC2=BF·GF, (3)=.