如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.(2)当抛物线的对称轴与⊙M相切时, 求此时抛物线的解析式.(3)连结AE、AC、CE,若.①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、P为顶点的三角形和△ACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
(本题8分)如图,AB是⊙O的直径,C.D两点在⊙O上,若∠C=45°. (1)求∠ABD的度数; (2)若∠CDB=30°,BC=3,求⊙O的半径.
(本题8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为. (1)布袋里红球有多少个? (2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
(本小题满分12分)抛物线与x轴交于A ,B两点,且点A在点B的左侧,与y轴交于点C. (1)当OB=OC时,求此时抛物线函数解析式; (2)当△ABC为等腰三角形时,求m的值; (3)若点P与点Q在(1)中抛物线上,,.求的值.
(本小题满分12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不能低于成本单价,且获利不得高于成本的45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,. (1)求一次函数的表达式; (2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价的范围.
(本小题满分10分)已知关于x的函数(a为常数). (1)若函数的图象与坐标轴恰有两个交点,求a的值; (2)若函数的图象是抛物线,开口向上且顶点在x轴下方,求a的取值范围.