(11·贺州)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值.
已知二次函数y=(x+1)2+4. (1)写出抛物线的开口方向、顶点坐标和对称轴. (2)画出此函数的图象,并说出此函数图象与y=12x2的图象的关系.
已知函数y=(m2﹣m)x2+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样?
已知:抛物线y=﹣x2+4x﹣3与x轴相交于A、B两点(A点在B点的左侧),顶点为P. (1)求A、B、P三点坐标; (2)画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零; (3)确定此抛物线与直线y=﹣2x+6公共点的个数,并说明理由.
如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD. (1)求证:DC是⊙O的切线; (2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.