已知 ΔAOB 和 ΔMON 都是等腰直角三角形 ( 2 2 OA < OM < OA ) , ∠ AOB = ∠ MON = 90 ° .
(1)如图1,连接 AM , BN ,求证: AM = BN ;
(2)将 ΔMON 绕点 O 顺时针旋转.
①如图2,当点 M 恰好在 AB 边上时,求证: A M 2 + B M 2 = 2 O M 2 ;
②当点 A , M , N 在同一条直线上时,若 OA = 4 , OM = 3 ,请直接写出线段 AM 的长.
如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A′B′C′, (2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积。
因式分解 (1) x3+2x2y+xy2 (2)m2(m-1)+4(1-m)
化简求值 已知:(x+a)(x-)的结果中不含关于字母的一次项,求的值
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点. (1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值; (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程; (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°. (1)如图1,当∠C=45°时,请写出图中一对相等的线段;_________________ (2)如图2,若BD=2,BA=,求AD的长及△ACD的面积.