初中数学

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为        

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,直线 l : y = kx + b ( k < 0 ) 与函数 y = 4 x ( x > 0 ) 的图象相交于 A C 两点,与 x 轴相交于 T 点,过 A C 两点作 x 轴的垂线,垂足分别为 B D ,过 A C 两点作 y 轴的垂线,垂足分别为 E F ;直线 AE CD 相交于点 P ,连接 DE .设 A C 两点的坐标分别为 ( a , 4 a ) ( c , 4 c ) ,其中 a > c > 0

(1)如图①,求证: EDP = ACP

(2)如图②,若 A D E C 四点在同一圆周上,求 k 的值;

(3)如图③,已知 c = 1 ,且点 P 在直线 BF 上,试问:在线段 AT 上是否存在点 M ,使得 OM AM ?如存在,请求出点 M 的坐标;若不存在,请说明理由.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知等边 ΔABC 的边长为8,点 P AB 边上的一个动点(与点 A B 不重合).直线 l 是经过点 P 的一条直线,把 ΔABC 沿直线 l 折叠,点 B 的对应点是点 B '

(1)如图1,当 PB = 4 时,若点 B ' 恰好在 AC 边上,则 AB ' 的长度为         

(2)如图2,当 PB = 5 时,若直线 l / / AC ,则 BB ' 的长度为       

(3)如图3,点 P AB 边上运动过程中,若直线 l 始终垂直于 AC ΔACB ' 的面积是否变化?若变化,说明理由;若不变化,求出面积;

(4)当 PB = 6 时,在直线 l 变化过程中,求 ΔACB ' 面积的最大值.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC = 4 ACB = 90 ° ,正方形 BDEF 的边长为2,将正方形 BDEF 绕点 B 旋转一周,连接 AE BE CD

(1)请找出图中与 ΔABE 相似的三角形,并说明理由;

(2)求当 A E F 三点在一直线上时 CD 的长;

(3)设 AE 的中点为 M ,连接 FM ,试求 FM 长的取值范围.

来源:2019年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

定义:若实数 x y 满足 x 2 = 2 y + t y 2 = 2 x + t ,且 x y t 为常数,则称点 M ( x , y ) 为“线点”.例如,点 ( 0 , - 2 ) ( - 2 , 0 ) 是“线点”.已知:在直角坐标系 xOy 中,点 P ( m , n )

(1) P 1 ( 3 , 1 ) P 2 ( - 3 , 1 ) 两点中,点     是“线点”;

(2)若点 P 是“线点”,用含 t 的代数式表示 mn ,并求 t 的取值范围;

(3)若点 Q ( n , m ) 是“线点”,直线 PQ 分别交 x 轴、 y 轴于点 A B ,当 | POQ - AOB | = 30 ° 时,直接写出 t 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,在 ΔABC 中, AB = AC = 3 BAC = 100 ° D BC 的中点.小明对图①进行了如下探究:在线段 AD 上任取一点 P ,连接 PB .将线段 PB 绕点 P 按逆时针方向旋转 80 ° ,点 B 的对应点是点 E ,连接 BE ,得到 ΔBPE .小明发现,随着点 P 在线段 AD 上位置的变化,点 E 的位置也在变化,点 E 可能在直线 AD 的左侧,也可能在直线 AD 上,还可能在直线 AD 的右侧.

请你帮助小明继续探究,并解答下列问题:

(1)当点 E 在直线 AD 上时,如图②所示.

BEP =        °

②连接 CE ,直线 CE 与直线 AB 的位置关系是      

(2)请在图③中画出 ΔBPE ,使点 E 在直线 AD 的右侧,连接 CE .试判断直线 CE 与直线 AB 的位置关系,并说明理由.

(3)当点 P 在线段 AD 上运动时,求 AE 的最小值.

来源:2019年江苏省淮安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,点 A 坐标为 ( 2 , 0 ) ,以 OA 为边在第一象限内作等边 ΔOAB ,点 C x 轴上一动点,且在点 A 右侧,连接 BC ,以 BC 为边在第一象限内作等边 ΔBCD ,连接 AD BC E

(1)①直接回答: ΔOBC ΔABD 全等吗?

②试说明:无论点 C 如何移动, AD 始终与 OB 平行;

(2)当点 C 运动到使 A C 2 = AE · AD 时,如图2,经过 O B C 三点的抛物线为 y 1 .试问: y 1 上是否存在动点 P ,使 ΔBEP 为直角三角形且 BE 为直角边?若存在,求出点 P 坐标;若不存在,说明理由;

(3)在(2)的条件下,将 y 1 沿 x 轴翻折得 y 2 ,设 y 1 y 2 组成的图形为 M ,函数 y = 3 x + 3 m 的图象 l M 有公共点.试写出: l M 的公共点为3个时, m 的取值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 A 出发沿折线段 AD DE 向点 E 运动,运动的时间为 t ( 0 t 6 ) 秒,设 ΔBPE 的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 运动的过程中,是否存在点 P ,使 ΔBEP 是以 BE 为腰的等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的边 AB x 轴上,点 B 坐标 ( 3 , 0 ) ,点 C y 轴正半轴上,且 sin CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 t 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S

(1)求点 D 坐标.

(2)求 S 关于 t 的函数关系式.

(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B C Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

(1)数学理解:如图①, ΔABC 是等腰直角三角形,过斜边 AB 的中点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,求 AB BE AF 之间的数量关系;

(2)问题解决:如图②,在任意直角 ΔABC 内,找一点 D ,过点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,若 AB = BE + AF ,求 ADB 的度数;

(3)联系拓广:如图③,在(2)的条件下,分别延长 ED FD ,交 AB 于点 M N ,求 MN AM BN 的数量关系.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于 30 ° ,那么它所对的直角边等于斜边的一半.即:如图1,在 Rt Δ ABC 中, ACB = 90 ° ABC = 30 ° ,则: AC = 1 2 AB

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接 AB 边上中线 CE ,由于 CE = 1 2 AB ,易得结论:① ΔACE 为等边三角形;② BE CE 之间的数量关系为  

(2)如图2,点 D 是边 CB 上任意一点,连接 AD ,作等边 ΔADE ,且点 E ACB 的内部,连接 BE .试探究线段 BE DE 之间的数量关系,写出你的猜想并加以证明.

(3)当点 D 为边 CB 延长线上任意一点时,在(2)条件的基础上,线段 BE DE 之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系 xOy 中,点 A 的坐标为 ( 3 1 ) ,点 B x 轴正半轴上的一动点,以 AB 为边作等边 ΔABC ,当 C 点在第一象限内,且 B ( 2 , 0 ) 时,求 C 点的坐标.

来源:2018年山东省日照市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

初中数学三角形试题