定义:若实数 x , y 满足 x 2 = 2 y + t , y 2 = 2 x + t ,且 x ≠ y , t 为常数,则称点 M ( x , y ) 为“线点”.例如,点 ( 0 , - 2 ) 和 ( - 2 , 0 ) 是“线点”.已知:在直角坐标系 xOy 中,点 P ( m , n ) .
(1) P 1 ( 3 , 1 ) 和 P 2 ( - 3 , 1 ) 两点中,点 是“线点”;
(2)若点 P 是“线点”,用含 t 的代数式表示 mn ,并求 t 的取值范围;
(3)若点 Q ( n , m ) 是“线点”,直线 PQ 分别交 x 轴、 y 轴于点 A , B ,当 | ∠ POQ - ∠ AOB | = 30 ° 时,直接写出 t 的值.
计算:(1)-(3-π)0- (2)tan60º-(1+)(1-)+
解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).
计算:(1) (2)
计算(1) (2)
计算: