如图,在平面直角坐标系中,菱形 ABCD 的边 AB 在 x 轴上,点 B 坐标 ( − 3 , 0 ) ,点 C 在 y 轴正半轴上,且 sin ∠ CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 ⩽ t ⩽ 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S .
(1)求点 D 坐标.
(2)求 S 关于 t 的函数关系式.
(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B 、 C 、 Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.
如图,海上有小岛A和小岛B,轮船以45km/h的速度由C向B航行,在C处测得A的方向角为北偏东60°,测得B的方向角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A和小岛B之间的距离(结果保留整数,参考数据:,).
如图,我国为了维护对钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°.当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).
在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(,).
(广西柳州)如图,在△ABC中,BD⊥AC,AB=6,,∠A=30°. (1)求BD和AD的长; (2)求tan∠C的值.
如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米) (参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)