初中数学

定义:如图1,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,点 P 在该抛物线上 ( P 点与 A B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a 0 ) 的勾股点.

(1)直接写出抛物线 y = x 2 + 1 的勾股点的坐标.

(2)如图2,已知抛物线 C : y = a x 2 + bx ( a 0 ) x 轴交于 A B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.

(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP Q 点(异于点 P ) 的坐标.

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过点 ( 3 , 12 ) ( - 2 , - 3 ) ,与两坐标轴的交点分别为 A B C ,它的对称轴为直线 l

(1)求该抛物线的表达式;

(2) P 是该抛物线上的点,过点 P l 的垂线,垂足为 D E l 上的点.要使以 P D E 为顶点的三角形与 ΔAOC 全等,求满足条件的点 P ,点 E 的坐标.

来源:2020年陕西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = ( x + a ) ( x a 1 ) ,其中 a 0

(1)若函数 y 1 的图象经过点 ( 1 , 2 ) ,求函数 y 1 的表达式;

(2)若一次函数 y 2 = ax + b 的图象与 y 1 的图象经过 x 轴上同一点,探究实数 a b 满足的关系式;

(3)已知点 P ( x 0 m ) Q ( 1 , n ) 在函数 y 1 的图象上,若 m < n ,求 x 0 的取值范围.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 )

(1)求抛物线过点 B 时顶点 A 的坐标;

(2)点 A 的坐标记为 ( x , y ) ,求 y x 的函数表达式;

(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + x 的图象,如图所示

(1)根据方程的根与函数图象之间的关系,将方程 x 2 + x = 1 的根在图上近似地表示出来(描点),并观察图象,写出方程 x 2 + x = 1 的根(精确到 0 . 1 )

(2)在同一直角坐标系中画出一次函数 y = 1 2 x + 3 2 的图象,观察图象写出自变量 x 取值在什么范围时,一次函数的值小于二次函数的值.

(3)如图,点 P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在 P 点上,写出平移后二次函数图象的函数表达式,并判断点 P 是否在函数 y = 1 2 x + 3 2 的图象上,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + 6 x 5 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,其顶点为 P ,连接 PA AC CP ,过点 C y 轴的垂线 l

(1)求点 P C 的坐标;

(2)直线 l 上是否存在点 Q ,使 ΔPBQ 的面积等于 ΔPAC 的面积的2倍?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为原点,平行于 x 轴的直线与抛物线 L : y = a x 2 相交于 A B 两点(点 B 在第一象限),点 D AB 的延长线上.

(1)已知 a = 1 ,点 B 的纵坐标为2.

①如图1,向右平移抛物线 L 使该抛物线过点 B ,与 AB 的延长线交于点 C ,求 AC 的长.

②如图2,若 BD = 1 2 AB ,过点 B D 的抛物线 L 2 ,其顶点 M x 轴上,求该抛物线的函数表达式.

(2)如图3,若 BD = AB ,过 O B D 三点的抛物线 L 3 ,顶点为 P ,对应函数的二次项系数为 a 3 ,过点 P PE / / x 轴,交抛物线 L E F 两点,求 a 3 a 的值,并直接写出 AB EF 的值.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知二次函数 y = - 1 2 ( x - m ) 2 + 4 图象的顶点为 A ,与 y 轴交于点 B ,异于顶点 A 的点 C ( 1 , n ) 在该函数图象上.

(1)当 m = 5 时,求 n 的值.

(2)当 n = 2 时,若点 A 在第一象限内,结合图象,求当 y 2 时,自变量 x 的取值范围.

(3)作直线 AC y 轴相交于点 D .当点 B x 轴上方,且在线段 OD 上时,求 m 的取值范围.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知函数 y 1 = a x 2 + bx y 2 = ax + b ( ab 0 ) .在同一平面直角坐标系中.

(1)若函数 y 1 的图象过点 ( 1 , 0 ) ,函数 y 2 的图象过点 ( 1 , 2 ) ,求 a b 的值.

(2)若函数 y 2 的图象经过 y 1 的顶点.

①求证: 2 a + b = 0

②当 1 < x < 3 2 时,比较 y 1 y 2 的大小.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y a x 2 + bx + 2 a 0 y 轴交于点 C ,与x轴交于 A B 两点(点 A 在点 B 的左侧),且 A 点坐标为 ( - 2 , 0 ) ,直线 BC 的解析式为 y = - 2 3 x + 2

(1)求抛物线的解析式;

(2)过点 A AD BC ,交抛物线于点D,点E为直线 BC 上方抛物线上一动点,连接CEEBBDDC.求四边形BECD面积的最大值及相应点E的坐标;

(3)将抛物线 y a x 2 + bx + 2 a 0 向左平移 2 个单位,已知点 M 为抛物线 y a x 2 + bx + 2 a 0 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A E M N 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = x 2 + bx + a y 2 = a x 2 + bx + 1 ( a b 是实数, a 0 )

(1)若函数 y 1 的对称轴为直线 x = 3 ,且函数 y 1 的图象经过点 ( a , b ) ,求函数 y 1 的表达式.

(2)若函数 y 1 的图象经过点 ( r , 0 ) ,其中 r 0 ,求证:函数 y 2 的图象经过点 ( 1 r 0 )

(3)设函数 y 1 和函数 y 2 的最小值分别为 m n ,若 m + n = 0 ,求 m n 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,图形 ABCD 是由两个二次函数 y 1 = k x 2 + m ( k < 0 ) y 2 = a x 2 + b ( a > 0 ) 的部分图象围成的封闭图形.已知 A ( 1 , 0 ) B ( 0 , 1 ) D ( 0 , 3 )

(1)直接写出这两个二次函数的表达式;

(2)判断图形 ABCD 是否存在内接正方形(正方形的四个顶点在图形 ABCD 上),并说明理由;

(3)如图2,连接 BC CD AD ,在坐标平面内,求使得 ΔBDC ΔADE 相似(其中点 C 与点 E 是对应顶点)的点 E 的坐标.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,抛物线过点 A ( 0 , 1 ) C ,顶点为 D ,直线 AC 与抛物线的对称轴 BD 的交点为 B ( 3 0 ) ,平行于 y 轴的直线 EF 与抛物线交于点 E ,与直线 AC 交于点 F ,点 F 的横坐标为 4 3 3 ,四边形 BDEF 为平行四边形.

(1)求点 F 的坐标及抛物线的解析式;

(2)若点 P 为抛物线上的动点,且在直线 AC 上方,当 ΔPAB 面积最大时,求点 P 的坐标及 ΔPAB 面积的最大值;

(3)在抛物线的对称轴上取一点 Q ,同时在抛物线上取一点 R ,使以 AC 为一边且以 A C Q R 为顶点的四边形为平行四边形,求点 Q 和点 R 的坐标.

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题解答题