初中数学

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 6 x 轴相交于 A B 两点,与 y 轴相交于点 C OA = 2 OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD BD BC CD

(1)求抛物线的函数表达式;

(2)若点 D x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;

(3)在(2)的条件下,点 M x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B D M N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 - 3 ax - 4 a 的图象经过点 C ( 0 , 2 ) ,交 x 轴于点 A B (点 A 在点 B 左侧),连接 BC ,直线 y = kx + 1 ( k > 0 ) y 轴交于点 D ,与 BC 上方的抛物线交于点 E ,与 BC 交于点 F

(1)求抛物线的解析式及点 A B 的坐标;

(2) EF DF 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知二次函数 y = - 1 2 ( x - m ) 2 + 4 图象的顶点为 A ,与 y 轴交于点 B ,异于顶点 A 的点 C ( 1 , n ) 在该函数图象上.

(1)当 m = 5 时,求 n 的值.

(2)当 n = 2 时,若点 A 在第一象限内,结合图象,求当 y 2 时,自变量 x 的取值范围.

(3)作直线 AC y 轴相交于点 D .当点 B x 轴上方,且在线段 OD 上时,求 m 的取值范围.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B AC 的延长线上,连结 OA OB DA DB

(1)如图1,当 AC / / x 轴时,

①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;

②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c

(2)如图2,若 b = - 2 BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.

来源:2020年浙江省湖州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知点 A ( 1 , 2 ) B ( 2 , 3 ) C ( 2 , 1 ) ,直线 y = x + m 经过点 A ,抛物线 y = a x 2 + bx + 1 恰好经过 A B C 三点中的两点.

(1)判断点 B 是否在直线 y = x + m 上,并说明理由;

(2)求 a b 的值;

(3)平移抛物线 y = a x 2 + bx + 1 ,使其顶点仍在直线 y = x + m 上,求平移后所得抛物线与 y 轴交点纵坐标的最大值.

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知直线 l 1 : y = - 2 x + 10 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A B 两点,交 x 轴于另一点 C BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,当 x 1 > x 2 5 时,总有 y 1 > y 2

(1)求二次函数的表达式;

(2)若直线 l 2 : y = mx + n ( n 10 ) ,求证:当 m = - 2 时, l 2 / / l 1

(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE ΔCEF 面积之和的最小值.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c 经过点 A ( - 3 , 0 ) 和点 B ( 2 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的函数表达式;

(2)点 P 是该抛物线上的动点,且位于 y 轴的左侧.

①如图1,过点 P PD x 轴于点 D ,作 PE y 轴于点 E ,当 PD = 2 PE 时,求 PE 的长;

②如图2,该抛物线上是否存在点 P ,使得 ACP = OCB ?若存在,请求出所有点 P 的坐标;若不存在,请说明理由.

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知点 A ( 1 , 0 ) 是抛物线 y = a x 2 + bx + m ( a b m 为常数, a 0 m < 0 ) x 轴的一个交点.

(Ⅰ)当 a = 1 m = - 3 时,求该抛物线的顶点坐标;

(Ⅱ)若抛物线与 x 轴的另一个交点为 M ( m , 0 ) ,与 y 轴的交点为 C ,过点 C 作直线 l 平行于 x 轴, E 是直线 l 上的动点, F y 轴上的动点, EF = 2 2

①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标;

②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 2

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题