如图,两条抛物线 , 相交于 , 两点,点 在 轴负半轴上,且为抛物线 的最高点.
(1)求抛物线 的解析式和点 的坐标;
(2)点 是抛物线 上 , 之间的一点,过点 作 轴的垂线交 于点 ,当线段 取最大值时,求 .
在平面直角坐标系中,二次函数 的图象与 轴交于 , 两点,交 轴于点 ,点 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 , , ,若 ,求点 的坐标;
(3)如图乙,过 , , 三点作 ,过点 作 轴,垂足为 ,交 于点 .点 在运动过程中线段 的长是否变化,若有变化,求出 的取值范围;若不变,求 的长.
在平面直角坐标系 中,直线 与 轴、 轴分别交于点 、 (如图).抛物线 经过点 .
[小题1]求线段 的长;
[小题2]如果抛物线 经过线段 上的另一点 ,且 ,求这条抛物线的表达式;
[小题3]如果抛物线 的顶点 位于 内,求 的取值范围.
如图,抛物线 经过点 和 ,与两坐标轴的交点分别为 , , ,它的对称轴为直线 .
(1)求该抛物线的表达式;
(2) 是该抛物线上的点,过点 作 的垂线,垂足为 , 是 上的点.要使以 、 、 为顶点的三角形与 全等,求满足条件的点 ,点 的坐标.
如图1(注:与图2完全相同)所示,抛物线 经过 、 两点,与 轴的另一个交点为 ,与 轴相交于点 .
(1)求抛物线的解析式.
(2)设抛物线的顶点为 ,求四边形 的面积.(请在图1中探索)
(3)设点 在 轴上,点 在抛物线上.要使以点 、 、 、 为顶点的四边形是平行四边形,求所有满足条件的点 的坐标.(请在图2中探索)
已知抛物线 , , 是常数, 的自变量 与函数值 的部分对应值如下表:
|
|
|
|
0 |
1 |
2 |
|
|
|
|
0 |
|
|
|
|
(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;
(2)求抛物线的表达式及 , 的值;
(3)请在图1中画出所求的抛物线.设点 为抛物线上的动点, 的中点为 ,描出相应的点 ,再把相应的点 用平滑的曲线连接起来,猜想该曲线是哪种曲线?
(4)设直线 与抛物线及(3)中的点 所在曲线都有两个交点,交点从左到右依次为 , , , ,请根据图象直接写出线段 , 之间的数量关系 .
如图,二次函数 的图象经过 , , 三点,以点 为位似中心,在 轴的右侧将 按相似比 放大,得到△ ,二次函数 的图象经过 , , 三点.
(1)画出△ ,试求二次函数 的表达式;
(2)点 在二次函数 的图象上, ,直线 与二次函数 的图象交于点 (异于点 .
①求点 的坐标(横、纵坐标均用含 的代数式表示)
②连接 ,若 ,求 的取值范围;
③当点 在第一象限内,过点 作 平行于 轴,与二次函数 的图象交于另一点 ,与二次函数 的图象交于点 , 在 的左侧),直线 与二次函数 的图象交于点 .△ △ ,则线段 的长度等于 .
如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .
(Ⅰ)若点 的横坐标为 ,求 面积的最大值,并求此时点 的坐标;
(Ⅱ)直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
如图,已知抛物线 与 轴交于点 , (点 位于点 的左侧), 为顶点,直线 经过点 ,与 轴交于点 .
(1)求线段 的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 .若新抛物线经过点 ,并且新抛物线的顶点和原抛物线的顶点的连线 平行于直线 ,求新抛物线对应的函数表达式.
如图1,图形 是由两个二次函数 与 的部分图象围成的封闭图形.已知 、 、 .
(1)直接写出这两个二次函数的表达式;
(2)判断图形 是否存在内接正方形(正方形的四个顶点在图形 上),并说明理由;
(3)如图2,连接 , , ,在坐标平面内,求使得 与 相似(其中点 与点 是对应顶点)的点 的坐标.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 , 是抛物线上一点(点 与点 、 、 不重合).
(1) ,点 的坐标是 ;
(2)设直线 与直线 相交于点 ,是否存在这样的点 ,使得 ?若存在,求出点 的横坐标;若不存在,请说明理由;
(3)连接 、 ,判断 和 的数量关系,并说明理由.
小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验:
(1)已知抛物线 经过点 ,则 ,顶点坐标为 ,该抛物线关于点 成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 ,以 轴上的点 为中心,作该抛物线关于点 中心对称的抛物线 ,则我们又称抛物线 为抛物线 的“衍生抛物线”,点 为“衍生中心”.
(2)已知抛物线 关于点 的衍生抛物线为 ,若这两条抛物线有交点,求 的取值范围.
问题解决:
(3)已知抛物线
①若抛物线 的衍生抛物线为 ,两抛物线有两个交点,且恰好是它们的顶点,求 、 的值及衍生中心的坐标;
②若抛物线 关于点 的衍生抛物线为 ,其顶点为 ;关于点 的衍生抛物线为 ,其顶点为 ; ;关于点 的衍生抛物线为 ,其顶点为 为正整数).求 的长(用含 的式子表示).
如图,抛物线 交 轴正半轴于点 ,直线 经过抛物线的顶点 .已知该抛物线的对称轴为直线 ,交 轴于点 .
(1)求 , 的值.
(2) 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 , .设点 的横坐标为 , 的面积为 ,记 .求 关于 的函数表达式及 的范围.
已知抛物线 经过点 , .
(1)求该抛物线的函数表达式;
(2)将抛物线 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.