如图,两条抛物线 y 1 = - x 2 + 4 , y 2 = - 1 5 x 2 + bx + c 相交于 A , B 两点,点 A 在 x 轴负半轴上,且为抛物线 y 2 的最高点.
(1)求抛物线 y 2 的解析式和点 B 的坐标;
(2)点 C 是抛物线 y 1 上 A , B 之间的一点,过点 C 作 x 轴的垂线交 y 2 于点 D ,当线段 CD 取最大值时,求 S ΔBCD .
如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.
若一个三角形的三个顶点均在一个图形的不同的边上,则称此三角形为该图形的内接三角形. (1)在图①中画出△ABC的一个内接直角三角形; (2)如图②,已知△ABC中,∠BAC=60°,∠B=45°,AB=8,AD为BC边上的高,探究以D为一个顶点作△ABC的内接三角形,其周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由; (3)如图③,△ABC为等腰直角三角形,∠C=90°,AC=6,试探究:△ABC的内接等腰直角三角形的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。 (1)点A、B、C的坐标分别为 、 、 。 (2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; (3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。
如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=与边BC交于点D(4,m),与边AB交于点E(2,n). (1)求n关于m的函数关系式; (2)若BD=2,tan∠BAC=,求k的值和点B的坐标.
如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB//CD,OB=6cm,OC=8cm, 求:(1)∠BOC的度数; (2)BE+CG的长; (3)⊙O的半径。