初中数学

已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.

(1)抛物线的解析式为  ,抛物线的顶点坐标为  

(2)如图1,连接 OP BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;

(3)如图2,点 E 的坐标为 ( 0 , 1 ) ,点 G x 轴负半轴上的一点, OGE = 15 ° ,连接 PE ,若 PEG = 2 OGE ,请求出点 P 的坐标;

(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2019年贵州省黔东南州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,且关于直线 x = 1 对称,点 A 的坐标为 ( 1 , 0 )

(1)求二次函数的表达式;

(2)连接 BC ,若点 P y 轴上时, BP BC 的夹角为 15 ° ,求线段 CP 的长度;

(3)当 a x a + 1 时,二次函数 y = x 2 + bx + c 的最小值为 2 a ,求 a 的值.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 分别相交于 A B 两点,且此抛物线与 x 轴的一个交点为 C ,连接 AC BC .已知 A ( 0 , 3 ) C ( 3 , 0 )

(1)求抛物线的解析式;

(2)在抛物线对称轴 l 上找一点 M ,使 | MB MC | 的值最大,并求出这个最大值;

(3)点 P y 轴右侧抛物线上一动点,连接 PA ,过点 P PQ PA y 轴于点 Q ,问:是否存在点 P 使得以 A P Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c x 轴交于 A ( 3 0 ) B 两点(点 B 在点 A 的左侧),与 y 轴交于点 C ,且 OB = 3 OA = 3 OC OAC 的平分线 AD y 轴于点 D ,过点 A 且垂直于 AD 的直线 l y 轴于点 E ,点 P x 轴下方抛物线上的一个动点,过点 P PF x 轴,垂足为 F ,交直线 AD 于点 H

(1)求抛物线的解析式;

(2)设点 P 的横坐标为 m ,当 FH = HP 时,求 m 的值;

(3)当直线 PF 为抛物线的对称轴时,以点 H 为圆心, 1 2 HC 为半径作 H ,点 Q H 上的一个动点,求 1 4 AQ + EQ 的最小值.

来源:2018年广西柳州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点 ( A B 的左侧),且 OA = 3 OB = 1 ,与 y 轴交于 C ( 0 , 3 ) ,抛物线的顶点坐标为 D ( 1 , 4 )

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)过点 D 作直线 DE / / y 轴,交 x 轴于点 E ,点 P 是抛物线上 B D 两点间的一个动点(点 P 不与 B D 两点重合), PA PB 与直线 DE 分别交于点 F G ,当点 P 运动时, EF + EG 是否为定值?若是,试求出该定值;若不是,请说明理由.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = x 2 + 2 x 1 的顶点 A x 轴上,交 y 轴于 B ,将该抛物线向上平移,平移后的抛物线与 x 轴交于 C D ,顶点为 E ( 1 , 4 )

(1)求点 B 的坐标和平移后抛物线的解析式;

(2)点 M 在原抛物线上,平移后的对应点为 N ,若 OM = ON ,求点 M 的坐标;

(3)如图2,直线 CB 与平移后的抛物线交于 F .在抛物线的对称轴上是否存在点 P ,使得以 C F P 为顶点的三角形是直角三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 6 ( a 0 ) x 轴交于点 A ( 3 , 0 ) 和点 B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求抛物线 y 的函数表达式及点 C 的坐标;

(2)点 M 为坐标平面内一点,若 MA = MB = MC ,求点 M 的坐标;

(3)在抛物线上是否存在点 E ,使 4 tan ABE = 11 tan ACB ?若存在,求出满足条件的所有点 E 的坐标;若不存在,请说明理由.

来源:2018年广西桂林市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c 的图象与 x 轴相交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴相交于点 C ( 0 , 3 )

(1)求这个二次函数的表达式;

(2)若 P 是第四象限内这个二次函数的图象上任意一点, PH x 轴于点 H ,与线段 BC 交于点 M ,连接 PC

①求线段 PM 的最大值;

②当 ΔPCM 是以 PM 为一腰的等腰三角形时,求点 P 的坐标.

来源:2018年广西贵港市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 5 ax + c 与坐标轴分别交于点 A C E 三点,其中 A ( 3 , 0 ) C ( 0 , 4 ) ,点 B x 轴上, AC = BC ,过点 B BD x 轴交抛物线于点 D ,点 M N 分别是线段 CO BC 上的动点,且 CM = BN ,连接 MN AM AN

(1)求抛物线的解析式及点 D 的坐标;

(2)当 ΔCMN 是直角三角形时,求点 M 的坐标;

(3)试求出 AM + AN 的最小值.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx 的顶点 M ( 3 3 ) 关于 x 轴的对称点为 B ,点 A 为抛物线与 x 轴的一个交点,点 A 关于原点 O 的对称点为 A ' ;已知 C A ' B 的中点, P 为抛物线上一动点,作 CD x 轴, PE x 轴,垂足分别为 D E

(1)求点 A 的坐标及抛物线的解析式;

(2)当 0 < x < 2 3 时,是否存在点 P 使以点 C D P E 为顶点的四边形是平行四边形?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2018年广西百色市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + bx + c x 轴于点 A ( 4 , 0 ) B ( 2 , 0 ) ,交 y 轴于点 C ( 0 , 6 ) ,在 y 轴上有一点 E ( 0 , 2 ) ,连接 AE

(1)求二次函数的表达式;

(2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求 ΔADE 面积的最大值;

(3)抛物线对称轴上是否存在点 P ,使 ΔAEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不存在,请说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 1 ) 在抛物线 y = a x 2 + bx + c 上.

(1)求抛物线解析式;

(2)在直线 BC 上方的抛物线上求一点 P ,使 ΔPBC 面积为1;

(3)在 x 轴下方且在抛物线对称轴上,是否存在一点 Q ,使 BQC = BAC ?若存在,求出 Q 点坐标;若不存在,说明理由.

来源:2018年山东省日照市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ACB = 90 ° OC = 2 OB tan ABC = 2 ,点 B 的坐标为 ( 1 , 0 ) .抛物线 y = x 2 + bx + c 经过 A B 两点.

(1)求抛物线的解析式;

(2)点 P 是直线 AB 上方抛物线上的一点,过点 P PD 垂直 x 轴于点 D ,交线段 AB 于点 E ,使 PE = 1 2 DE

①求点 P 的坐标;

②在直线 PD 上是否存在点 M ,使 ΔABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx x 轴分别交于原点 O 和点 F ( 10 , 0 ) ,与对称轴 l 交于点 E ( 5 , 5 ) .矩形 ABCD 的边 AB x 轴正半轴上,且 AB = 1 ,边 AD BC 与抛物线分别交于点 M N .当矩形 ABCD 沿 x 轴正方向平移,点 M N 位于对称轴 l 的同侧时,连接 MN ,此时,四边形 ABNM 的面积记为 S ;点 M N 位于对称轴 l 的两侧时,连接 EM EN ,此时五边形 ABNEM 的面积记为 S .将点 A 与点 O 重合的位置作为矩形 ABCD 平移的起点,设矩形 ABCD 平移的长度为 t ( 0 t 5 )

(1)求出这条抛物线的表达式;

(2)当 t = 0 时,求 S ΔOBN 的值;

(3)当矩形 ABCD 沿着 x 轴的正方向平移时,求 S 关于 t ( 0 < t 5 ) 的函数表达式,并求出 t 为何值时, S 有最大值,最大值是多少?

来源:2018年山东省聊城市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 经过 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 3 ) 三点, D 为直线 BC 上方抛物线上一动点, DE BC E

(1)求抛物线的函数表达式;

(2)如图1,求线段 DE 长度的最大值;

(3)如图2,设 AB 的中点为 F ,连接 CD CF ,是否存在点 D ,使得 ΔCDE 中有一个角与 CFO 相等?若存在,求点 D 的横坐标;若不存在,请说明理由.

来源:2018年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题