已知抛物线 经过点 和点 ,与 轴交于点 ,点 为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接 交 于点 ,当 时,请求出点 的坐标;
(3)如图2,点 的坐标为 ,点 为 轴负半轴上的一点, ,连接 ,若 ,请求出点 的坐标;
(4)如图3,是否存在点 ,使四边形 的面积为8?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,且关于直线 对称,点 的坐标为 .
(1)求二次函数的表达式;
(2)连接 ,若点 在 轴上时, 和 的夹角为 ,求线段 的长度;
(3)当 时,二次函数 的最小值为 ,求 的值.
如图,抛物线 与直线 分别相交于 , 两点,且此抛物线与 轴的一个交点为 ,连接 , .已知 , .
(1)求抛物线的解析式;
(2)在抛物线对称轴 上找一点 ,使 的值最大,并求出这个最大值;
(3)点 为 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 ,问:是否存在点 使得以 , , 为顶点的三角形与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 , , 两点(点 在点 的左侧),与 轴交于点 ,且 , 的平分线 交 轴于点 ,过点 且垂直于 的直线 交 轴于点 ,点 是 轴下方抛物线上的一个动点,过点 作 轴,垂足为 ,交直线 于点 .
(1)求抛物线的解析式;
(2)设点 的横坐标为 ,当 时,求 的值;
(3)当直线 为抛物线的对称轴时,以点 为圆心, 为半径作 ,点 为 上的一个动点,求 的最小值.
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点 在 的左侧),且 , ,与 轴交于 ,抛物线的顶点坐标为 .
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)过点 作直线 轴,交 轴于点 ,点 是抛物线上 、 两点间的一个动点(点 不与 、 两点重合), 、 与直线 分别交于点 、 ,当点 运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
如图1,抛物线 的顶点 在 轴上,交 轴于 ,将该抛物线向上平移,平移后的抛物线与 轴交于 , ,顶点为 .
(1)求点 的坐标和平移后抛物线的解析式;
(2)点 在原抛物线上,平移后的对应点为 ,若 ,求点 的坐标;
(3)如图2,直线 与平移后的抛物线交于 .在抛物线的对称轴上是否存在点 ,使得以 , , 为顶点的三角形是直角三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 和点 ,与 轴交于点 .
(1)求抛物线 的函数表达式及点 的坐标;
(2)点 为坐标平面内一点,若 ,求点 的坐标;
(3)在抛物线上是否存在点 ,使 ?若存在,求出满足条件的所有点 的坐标;若不存在,请说明理由.
如图,已知二次函数 的图象与 轴相交于 , 两点,与 轴相交于点 .
(1)求这个二次函数的表达式;
(2)若 是第四象限内这个二次函数的图象上任意一点, 轴于点 ,与线段 交于点 ,连接 .
①求线段 的最大值;
②当 是以 为一腰的等腰三角形时,求点 的坐标.
如图,抛物线 与坐标轴分别交于点 , , 三点,其中 , ,点 在 轴上, ,过点 作 轴交抛物线于点 ,点 , 分别是线段 , 上的动点,且 ,连接 , , .
(1)求抛物线的解析式及点 的坐标;
(2)当 是直角三角形时,求点 的坐标;
(3)试求出 的最小值.
抛物线 的顶点 , 关于 轴的对称点为 ,点 为抛物线与 轴的一个交点,点 关于原点 的对称点为 ;已知 为 的中点, 为抛物线上一动点,作 轴, 轴,垂足分别为 , .
(1)求点 的坐标及抛物线的解析式;
(2)当 时,是否存在点 使以点 , , , 为顶点的四边形是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数 交 轴于点 、 ,交 轴于点 ,在 轴上有一点 ,连接 .
(1)求二次函数的表达式;
(2)若点 为抛物线在 轴负半轴上方的一个动点,求 面积的最大值;
(3)抛物线对称轴上是否存在点 ,使 为等腰三角形?若存在,请直接写出所有 点的坐标,若不存在,请说明理由.
如图,已知点 , , 在抛物线 上.
(1)求抛物线解析式;
(2)在直线 上方的抛物线上求一点 ,使 面积为1;
(3)在 轴下方且在抛物线对称轴上,是否存在一点 ,使 ?若存在,求出 点坐标;若不存在,说明理由.
如图,在平面直角坐标系中, , , ,点 的坐标为 .抛物线 经过 、 两点.
(1)求抛物线的解析式;
(2)点 是直线 上方抛物线上的一点,过点 作 垂直 轴于点 ,交线段 于点 ,使 .
①求点 的坐标;
②在直线 上是否存在点 ,使 为直角三角形?若存在,求出符合条件的所有点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴分别交于原点 和点 ,与对称轴 交于点 .矩形 的边 在 轴正半轴上,且 ,边 , 与抛物线分别交于点 , .当矩形 沿 轴正方向平移,点 , 位于对称轴 的同侧时,连接 ,此时,四边形 的面积记为 ;点 , 位于对称轴 的两侧时,连接 , ,此时五边形 的面积记为 .将点 与点 重合的位置作为矩形 平移的起点,设矩形 平移的长度为 .
(1)求出这条抛物线的表达式;
(2)当 时,求 的值;
(3)当矩形 沿着 轴的正方向平移时,求 关于 的函数表达式,并求出 为何值时, 有最大值,最大值是多少?