如图,已知二次函数 y = a x 2 + bx + c 的图象与 x 轴相交于 A ( − 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴相交于点 C ( 0 , − 3 ) .
(1)求这个二次函数的表达式;
(2)若 P 是第四象限内这个二次函数的图象上任意一点, PH ⊥ x 轴于点 H ,与线段 BC 交于点 M ,连接 PC .
①求线段 PM 的最大值;
②当 ΔPCM 是以 PM 为一腰的等腰三角形时,求点 P 的坐标.
天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原价的九折出售.(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?
如图,⊙M过坐标原点O,分别交两坐标轴于A(1,O),B(0,2)两点,直线CD交x轴于点C(6,0),交y轴于点D(0,3),过点O作直线OF,分别交⊙M于点E,交直线CD于点F. (1)求证:∠CDO=∠BAO; (2)求证:OE•OF=OA•OC; (3)若OE=,试求点F的坐标.
D
如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.
如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
空气质量的优劣直接影响着人们的身体健康.天水市某校兴趣小组,于2014年5月某一周,对天水市区的空气质量指数(AQI)进行监测,监测结果如图.请你回答下列问题:(1)这一周空气质量指数的极差、众数分别是多少?(2)当0≤AQI≤50时,空气质量为优.这一周空气质量为优的频率是多少?(3)根据以上信息,谈谈你对天水市区空气质量的看法.