如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
已知直线 交 轴于点 ,交 轴于点 ,二次函数的图象过 , 两点,交 轴于另一点 , ,且对于该二次函数图象上的任意两点 , , , ,当 时,总有 .
(1)求二次函数的表达式;
(2)若直线 ,求证:当 时, ;
(3) 为线段 上不与端点重合的点,直线 过点 且交直线 于点 ,求 与 面积之和的最小值.
如图,抛物线 与 轴交于点 、 ,与 轴交于点 ,已知 .
(1)求 的值和直线 对应的函数表达式;
(2) 为抛物线上一点,若 ,请直接写出点 的坐标;
(3) 为抛物线上一点,若 ,求点 的坐标.
如图,在平面直角坐标系中,点 为坐标原点,抛物线 的顶点是 ,将 绕点 顺时针旋转 后得到 ,点 恰好在抛物线上, 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2) 是线段 上一动点,且不与点 , 重合,过点 作平行于 轴的直线,与 的边分别交于 , 两点,将 以直线 为对称轴翻折,得到△ ,设点 的纵坐标为 .
①当△ 在 内部时,求 的取值范围;
②是否存在点 ,使 ,若存在,求出满足条件 的值;若不存在,请说明理由.
已知抛物线 .
(1)求抛物线的对称轴;
(2)把抛物线沿 轴向下平移 个单位,若抛物线的顶点落在 轴上,求 的值;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
抛物线 与 轴交于 、 两点,与 轴交于点 ,点 的坐标为 ,点 的坐标为 .点 为抛物线 上的一个动点.过点 作 轴于点 ,交直线 于点 .
(1)求 、 的值;
(2)设点 在抛物线 的对称轴上,当 的周长最小时,直接写出点 的坐标;
(3)在第一象限,是否存在点 ,使点 到直线 的距离是点 到直线 的距离的5倍?若存在,求出点 所有的坐标;若不存在,请说明理由.
阅读下面的材料:
如果函数 满足:对于自变量 取值范围内的任意 , ,
(1)若 ,都有 ,则称 是增函数;
(2)若 ,都有 ,则称 是减函数.
例题:证明函数 是增函数.
证明:任取 ,且 , .
则 .
且 , ,
, .
,即 , .
函数 是增函数.
根据以上材料解答下列问题:
(1)函数 , (1) , (2) , (3) , (4) ;
(2)猜想 是 函数(填“增”或“减” ,并证明你的猜想.
在平面直角坐标系中,二次函数 的图象与 轴交于 , 两点,交 轴于点 ,点 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 , , ,若 ,求点 的坐标;
(3)如图乙,过 , , 三点作 ,过点 作 轴,垂足为 ,交 于点 .点 在运动过程中线段 的长是否变化,若有变化,求出 的取值范围;若不变,求 的长.
在平面直角坐标系中,抛物线 的顶点为 .
(1)求顶点 的坐标(用含有字母 的代数式表示);
(2)若点 , 在抛物线上,且 ,则 的取值范围是 ;(直接写出结果即可)
(3)当 时,函数 的最小值等于6,求 的值.
已知关于 的二次函数 (实数 , 为常数).
(1)若二次函数的图象经过点 ,对称轴为 ,求此二次函数的表达式;
(2)若 ,当 时,二次函数的最小值为21,求 的值;
(3)记关于 的二次函数 ,若在(1)的条件下,当 时,总有 ,求实数 的最小值.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.