在平面直角坐标系 中,规定:抛物线 的伴随直线为 .例如:抛物线 的伴随直线为 ,即 .
(1)在上面规定下,抛物线 的顶点坐标为 ,伴随直线为 ,抛物线 与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线 与其伴随直线相交于点 , (点 在点 的左侧),与 轴交于点 , .
①若 ,求 的值;
②如果点 是直线 上方抛物线上的一个动点, 的面积记为 ,当 取得最大值 时,求 的值.
如图,抛物线 的图象与 轴交于 , 两点,与 轴交于点 ,抛物线的对称轴与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图1,点 为抛物线上一点,且 ,过点 作 轴,交抛物线的对称轴于点 ,作 轴于点 ,得到矩形 ,求矩形 周长的最大值;
(3)如图2,点 为抛物线对称轴上一点,是否存在点 ,使以点 , , 为顶点的三角形是直角三角形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,二次函数 的图象与 轴交于 , 两点,交 轴于点 ,点 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 , , ,若 ,求点 的坐标;
(3)如图乙,过 , , 三点作 ,过点 作 轴,垂足为 ,交 于点 .点 在运动过程中线段 的长是否变化,若有变化,求出 的取值范围;若不变,求 的长.
如图,在平面直角坐标系中, 的一边 在 轴上, ,点 在第一象限内, 与 轴交于点 ,抛物线 经过 、 两点,与 轴交于点 .
(1)请直接写出抛物线的表达式;
(2)求 的长;
(3)点 是 轴下方抛物线上一动点,设点 的横坐标为 , 的面积为 ,试求出 与 的函数关系式;
(4)若点 是 轴上一点(不与点 重合),抛物线上是否存在点 ,使 .若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,其对称轴交抛物线于点 ,交 轴于点 ,已知 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 为抛物线上一动点,当 时,求点 的坐标;
(3)平行于 轴的直线交抛物线于 、 两点,以线段 为对角线作菱形 ,当点 在 轴上,且 时,求菱形对角线 的长.
如图,在平面直角坐标系中,抛物线 , 为常数, 经过两点 , ,交 轴正半轴于点 .
(1)求抛物线 的解析式.
(2)过点 作 垂直于 轴,垂足为点 ,连接 , ,将 以 为轴翻折,点 的对应点为 ,直线 交 轴于点 ,请判断点 是否在抛物线上,并说明理由.
(3)在(2)的条件下,点 是线段 (不包含端点)上一动点,过点 垂直于 轴的直线分别交直线 及抛物线于点 , ,连接 ,请探究:是否存在点 ,使 是以 为腰的等腰三角形?若存在,请求出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 的顶点为 .
(1)求顶点 的坐标(用含有字母 的代数式表示);
(2)若点 , 在抛物线上,且 ,则 的取值范围是 ;(直接写出结果即可)
(3)当 时,函数 的最小值等于6,求 的值.
已知点 、 在抛物线 上,
(1)求抛物线的解析式;
(2)如图1,点 的坐标为 , ,直线 交抛物线于另一点 ,过点 作 轴的垂线,垂足为 .设抛物线与 轴的正半轴交于点 ,连接 、 ,求证: ;
(3)如图2,直线 分别交 轴、 轴于 、 两点.点 从点 出发,沿射线 方向匀速运动,速度为每秒 个单位长度;同时点 从原点 出发,沿 轴正方向匀速运动,速度为每秒1个单位长度.点 是直线 与抛物线的一个交点,当运动到 秒时, ,直接写出 的值.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.