模具厂计划生产面积为4,周长为的矩形模具.对于
的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为,
,由矩形的面积为4,得
,即
;由周长为
,得
,即
.满足要求的
应是两个函数图象在第 一 象限内交点的坐标.
(2)画出函数图象
函数的图象如图所示,而函数
的图象可由直线
平移得到.请在同一直角坐标系中直接画出直线
.
(3)平移直线,观察函数图象
①当直线平移到与函数的图象有唯一交点
时,周长
的值为 ;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长的取值范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长的取值范围为 .
如图,一次函数 的图象与反比例函数 为常数, 的图象交于 、 两点,过点 作 轴,垂足为 ,连接 ,已知 , , .
(1)求一次函数和反比例函数的解析式.
(2)结合图象直接写出:当 时, 的取值范围.
如图,一次函数的图象与
轴交于点
,与反比例函数
的图象交于点
.以
为对角线作矩形
,使顶点
,
落在
轴上(点
在点
的右边),
与
交于点
.
(1)求一次函数和反比例函数的解析式;
(2)求点的坐标.
如图,已知 , 是一次函数 和反比例函数 的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程 的解;
(3)求 的面积;
(4)观察图象,直接写出不等式 的解集.
探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
已知直线 与 轴交于点 ,与 轴交于点 ,且与双曲线 交于点 .
(1)试确定双曲线的函数表达式;
(2)将 沿 轴翻折后,得到 ,画出 的图象,并求出 的函数表达式;
(3)在(2)的条件下,点 是线段 上点(不包括端点),过点 作 轴的平行线,分别交 于点 ,交双曲线于点 ,求 的取值范围.
如图,在平面直角坐标系中,函数
的图象与直线
交于点
.
(1)求、
的值;
(2)已知点,
,过点
作平行于
轴的直线,交直线
于点
,过点
作平行于
轴的直线,交函数
的图象于点
.
①当时,判断线段
与
的数量关系,并说明理由;
②若,结合函数的图象,直接写出
的取值范围.
如图:一次函数的图象与反比例函数的图象交于A(-2,6)和点B(4,n)
(1)求反比例函数的解析式和B点坐标
(2)根据图象直接回答,在什么范围时,一次函数的值大于反比例函数的值.
如图,一次函数与反比例函数
的图象交于
、
两点.
(1)求、
两点的坐标和反比例函数的解析式;
(2)根据图象,直接写出当时
的取值范围;
(3)求的面积.
如图,直线 与反比例函数 的图象交于点 ,与 轴交于点 ,平行于 轴的直线 交反比例函数的图象于点 ,交 于点 ,连接 .
(1)求 的值和反比例函数的表达式;
(2)直线 沿 轴方向平移,当 为何值时, 的面积最大?
如图,一次函数 与反比例函数 的图象交于
点 和 ,与 轴交于点 .
(1)求一次函数和反比例函数的解析式;
(2)在 轴上取一点 ,当 的面积为3时,求点 的坐标;
(3)将直线 向下平移2个单位后得到直线 ,当函数值 时,求 的取值范围.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.
已知、
两点是一次函数
和反比例函数
图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)观察图象,直接写出不等式的解集.