已知直线 l 1 : y = x + 3 与 x 轴交于点 A ,与 y 轴交于点 B ,且与双曲线 y = k x 交于点 C ( 1 , a ) .
(1)试确定双曲线的函数表达式;
(2)将 l 1 沿 y 轴翻折后,得到 l 2 ,画出 l 2 的图象,并求出 l 2 的函数表达式;
(3)在(2)的条件下,点 P 是线段 AC 上点(不包括端点),过点 P 作 x 轴的平行线,分别交 l 2 于点 M ,交双曲线于点 N ,求 S ΔAMN 的取值范围.
如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式并说明理由.
解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.
如果一条抛物线与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形成为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是_________三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.
如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连结AE并延长,交BC的延长线于点G(如图2所示),若AB=2,AD=2,求线段BC和EG的长.
在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连结AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.