如果一条抛物线与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形成为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是_________三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.
定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示. 操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH 操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF 则四边形BCEF为矩形 证明:设正方形ABCD的边长为1,则BD==. 由折叠性质可知BG=BC=1,,则四边形BCEF为矩形 阅读以上内容,回答下列问题: 在图①中,所有与CH相等的线段是 ,tan的值是 已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图。 求证:四边形BCMN是矩形 将图②中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.
已知实数a,b满足,,当时,函数()的最大值与最小值之差是1,求a的值.
国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?
某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?