如图,正方形 ABOC 的面积为4,反比例函数 y = k x 的图象经过点 A ,过点 A 的直线 y = ax + b 与 y = k x 的图象相交于第三象限的点 D ,且点 D 到 y 轴的距离为4.
(1)求反比例函数 y = k x 和一次函数 y = ax + b 的解析式.
(2)当 0 < x ⩽ 2 时,观察函数 y = k x 的图象,直接写出 y 的取值范围.
(3)直线 y = ax + b 与坐标轴交于 M 、 N 两点,求 ΔOMN 外接圆的面积.
如图,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB边向点B以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).⑴当其中一点到达端点时,另一点也随之停止运动.①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形;②当t为何值时,四边形PQCD为等腰梯形.⑵若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形.
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求点C的坐标及梯形ABCO的面积;(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;(3)当为何值时,为直角三角形。
如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,反比例函数在第一象限内的图象经过点A,与BC交于点F,OB=,BF=BC。过点F作EF∥OB,交OA于点,点P为直线EF上的一个动点,连接PA,PO。若以P、O、A为顶点的三角形是直角三角形,请求出所有点P的坐标。
如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?