阅读下边的程序框图,运行相应的程序,输出 的值为( )
A. |
5 |
B. |
8 |
C. |
24 |
D. |
29 |
设 ,则" "是" "的( )
A. |
充分而不必要条件 |
B. |
必要而不充分条件 |
C. |
充要条件 |
D. |
既不充分也不必要条件 |
设变量 满足约束条件 ,则目标函数 的最大值为( )
A. |
2 |
B. |
3 |
C. |
5 |
D. |
6 |
已知函数 .
(Ⅰ)求曲线 的斜率为1的切线方程;
(Ⅱ)当 时,求证: ;
(Ⅲ)设 ,记 在区间 上的最大值为 ,当 最小时,求 的值.
已知椭圆 的右焦点为 ,且经过点 .
(Ⅰ)求椭圆 C的方程;
(Ⅱ)设 O为原点,直线 与椭圆 C交于两个不同点 P, Q,直线 与 x轴交于点 M,直线 与 x轴交于点 N,若 ,求证:直线 l经过定点.
如图,在四棱锥 中, ,底部 ABCD为菱形, E为 CD的中点.
(Ⅰ)求证: ;
(Ⅱ)若 ,求证: ;
(Ⅲ)棱 PB上是否存在点 F,使得 ?说明理由.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 |
不大于 元 |
大于 元 |
仅使用A |
27人 |
3人 |
仅使用B |
24人 |
1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 元的人数有变化?说明理由.
设 是等差数列, ,且 , , 成等比数列.
(Ⅰ)求 的通项公式;
(Ⅱ)记 的前 n项和为 ,求 的最小值.
李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当 时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则 的最大值为__________.
已知 l, m是平面 外的两条不同直线.给出下列三个论断:
① ;
② ;
③ .
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
设抛物线 的焦点为 ,准线为 .则以 为圆心,且与 相切的圆的方程为__________.