设函数 f ( x ) = e x cos x , g ( x ) 为 f x 的导函数.
(Ⅰ)求 f x 的单调区间;
(Ⅱ)当 x ∈ π 4 , π 2 时,证明 f ( x ) + g ( x ) π 2 - x ≥ 0 ;
(Ⅲ)设 x n 为函数 u ( x ) = f ( x ) - 1 在区间 2 nπ + π 4 , 2 nπ + π 2 内的零点,其中 n ∈ N ,证明 2 nπ + π 2 - x n < e - 2 nπ sin x 0 - cos x 0 .
指数函数f(x)的图象上一点的坐标是(-3,),则f(2)=______________.
(x,y)在映射f作用下的象是(x+y,x-y),则象(2,-3)的原象是___________。
给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是________.
已知、均为锐角,且=.
在中,角A,B,C所对的边分别是,且, 则.