高中数学

计算 lim n 2 n 2 - 3 n + 1 n 2 - 4 n + 1 = ________.

来源:2019年全国统一高考数学试卷(春季高考上海卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = e x cos x , g ( x ) f x 的导函数.

(Ⅰ)求 f x 的单调区间;

(Ⅱ)当 x π 4 , π 2 时,证明 f ( x ) + g ( x ) π 2 - x 0

(Ⅲ)设 x n 为函数 u ( x ) = f ( x ) - 1 在区间 2 + π 4 , 2 + π 2 内的零点,其中 n N ,证明 2 + π 2 - x n < e - 2 sin x 0 - cos x 0

来源:2019年全国统一高考数学试卷(天津卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = 1 4 x 3 - x 2 + x

(Ⅰ)求曲线 y = f ( x ) 的斜率为1的切线方程;

(Ⅱ)当 x [ - 2 , 4 ] 时,求证: x - 6 f ( x ) x

(Ⅲ)设 F ( x ) = | f ( x ) - ( x + a ) | ( a R ) ,记 F ( x ) 在区间 [ - 2 , 4 ] 上的最大值为 M a ,当 M a 最小时,求 a 的值.

来源:2019年全国统一高考数学试卷(北京卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = ( x - a ) ( x - b ) ( x - c ) , a , b , c R f ' ( x ) 为f(x)的导函数.

(1)若 a= b= c f(4)=8,求 a的值;

(2)若 ab b= c , 且 fx)和 f ' ( x ) 的零点均在集合 { - 3 , 1 , 3 } 中,求 fx)的极小值;

(3)若 a = 0 , 0 < b 1 , c = 1 ,且 fx)的极大值为 M,求证: M 4 27

来源:2019年全国统一高考数学试卷(江苏卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

高中数学导数的概念及其意义试题