设函数 f ( x ) = ( x - a ) ( x - b ) ( x - c ) , a , b , c ∈ R 、 f ' ( x ) 为f(x)的导函数.
(1)若 a= b= c , f(4)=8,求 a的值;
(2)若 a≠ b , b= c , 且 f( x)和 f ' ( x ) 的零点均在集合 { - 3 , 1 , 3 } 中,求 f( x)的极小值;
(3)若 a = 0 , 0 < b ⩽ 1 , c = 1 ,且 f( x)的极大值为 M,求证: M≤ 4 27 .
(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3. (1)求这个等腰梯形的外接圆E的方程; (2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.
(本小题满分12分)已知等比数列的各项均为正数,且,. (1) 求数列的通项公式; (2) 设,求数列的前项和.
(本小题满分12分)三角形的三个顶点是,,. (1)求AB边的中线所在直线的方程; (2)求BC边的高所在直线的方程; (3)求直线与直线的交点坐标.
(本小题满分14分)已知圆C的圆心在坐标原点,且与直线相切. (1)求直线被圆C所截得的弦AB的长; (2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程; (3)若与直线垂直的直线不过点R(1,-1),且与圆C交于不同的两点P,Q.若∠PRQ为钝角,求直线的纵截距的取值范围.
(本小题满分13分)已知函数,集合,集合. (1)求集合对应区域的面积; (2)若点,求的取值范围.