已知函数 f ( x ) = 1 4 x 3 - x 2 + x .
(Ⅰ)求曲线 y = f ( x ) 的斜率为1的切线方程;
(Ⅱ)当 x ∈ [ - 2 , 4 ] 时,求证: x - 6 ≤ f ( x ) ≤ x ;
(Ⅲ)设 F ( x ) = | f ( x ) - ( x + a ) | ( a ∈ R ) ,记 F ( x ) 在区间 [ - 2 , 4 ] 上的最大值为 M a ,当 M a 最小时,求 a 的值.
(本小题8分)已知圆C的圆心是直线和的交点且与直线相切,求圆C的方程.
(10分)在一次国际大型体育运动会上,某运动员报名参加了其中5个项目的比赛.已知该运动员在这5个项目中,每个项目能打破世界纪录的概率都是0.8,那么在本次运动会上: (1)求该运动员至少能打破3项世界纪录的概率; (2)若该运动员能打破世界纪录的项目数为,求的数学期望(即均值).
(10分) 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.
(8分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求; (1) 第1次和第2次抽都到理科题的概率; (2)在第1次抽到理科题的条件下, 第2次抽到理科题的概率;
(8分)有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有两个盒不放球,有多少种放法?