设定义在R上的函数f(x)满足:对于任意的x 1、x 2∈R,当x 1<x 2时,都有f(x 1)≤f(x 2).
(1)若f(x)=ax 3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:"h(x)是周期函数"的充要条件是"f(x)是常值函数".
在平面直角坐标系xOy中,已知椭圆Γ: =1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= ,求P的坐标;
(2)设P( ),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且 , ,求直线AQ的方程.
根据预测,某地第n(n∈N *)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n= ,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46) 2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
已知函数f(x)=cos 2x﹣sin 2x+ ,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a= ,角B所对边b=5,若f(A)=0,求△ABC的面积.
如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA 1的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
在平面直角坐标系xOy中,已知椭圆C 1: =1和C 2:x 2+ =1.P为C 1上的动点,Q为C 2上的动点,w是 的最大值.记Ω={(P,Q)|P在C 1上,Q在C 2上,且 =w},则Ω中元素个数为( )
A. |
2个 |
B. |
4个 |
C. |
8个 |
D. |
无穷个 |
已知a、b、c为实常数,数列{x n}的通项x n=an 2+bn+c,n∈N *,则"存在k∈N *,使得x 100+k、x 200+k、x 300+k成等差数列"的一个必要条件是( )
A. |
a≥0 |
B. |
b≤0 |
C. |
c=0 |
D. |
a﹣2b+c=0 |
在数列{a n}中,a n=(﹣ ) n , n∈N * , 则 a n( )
A. |
等于 |
B. |
等于0 |
C. |
等于 |
D. |
不存在 |
如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为"▲"的点在正方形的顶点处,设集合Ω={P 1 , P 2 , P 3 , P 4},点P∈Ω,过P作直线l P , 使得不在l P上的"▲"的点分布在l P的两侧.用D 1(l P)和D 2(l P)分别表示l P一侧和另一侧的"▲"的点到l P的距离之和.若过P的直线l P中有且只有一条满足D 1(l P)=D 2(l P),则Ω中所有这样的P为________.
设a 1、a 2∈R,且 + =2,则|10π﹣α 1﹣α 2|的最小值等于________.