在平面直角坐标系xOy中,已知椭圆Γ: x 2 4 + y 2 =1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= 2 ,求P的坐标;
(2)设P( 8 5 , 3 5 ),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且 AQ ⃗ = 2 AC ⃗ , PQ ⃗ = 4 PM ⃗ ,求直线AQ的方程.
(本小题满分13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点, 直线的斜率、、、满足.已知当轴重合时,,. (1)求椭圆的方程; (2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(本小题满分13分)某工厂生产A,B两种型号的玩具,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种玩具各100件进行检测,检测结果统计如下:
(Ⅰ)试分别估计玩具A、玩具B为正品的概率; (Ⅱ)生产一件玩具A,若是正品可盈利40元,若是次品则亏损5元;生产一件玩具B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下, (i)记X为生产1件玩具A和1件玩具B所得的总利润,求随机变量X的分布列和数学期望; (ii)求生产5件玩具B所获得的利润不少于140元的概率.
(本小题满分13分)如图,在三棱柱,⊥平面ABC,BC⊥AC,BC=AC=2,D为AC的中点. (1)求证:平面; (2)若二面角大小为,求直线与 所成角的大小.
(本小题满分13分)已知函数. (1)求函数的最小正周期和单调递增区间; (2)若在中,角,,的对边分别为,,,,为锐角,且,求面积的最大值.
(本小题满分14分)已知a>0,函数. (1)讨论函数f(x)的单调性; (2)当函数f(x)存在极值时,设所有极值之和为g(a),求g(a)的取值范围.