设定义在R上的函数f(x)满足:对于任意的x 1、x 2∈R,当x 1<x 2时,都有f(x 1)≤f(x 2).
(1)若f(x)=ax 3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:"h(x)是周期函数"的充要条件是"f(x)是常值函数".
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;(2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.
已知函数.(1)求函数的单调增区间;(2)在中,分别是角的对边,且,求的面积.
设函数.(1)求的单调区间;(2)当时,若方程在上有两个实数解,求实数的取值范围;(3)证明:当时,.
已知椭圆的短半轴长为,动点在直线(为半焦距)上.(1)求椭圆的标准方程;(2)求以为直径且被直线截得的弦长为的圆的方程;(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,求证:线段的长为定值,并求出这个定值.
一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.(1)试用含的代数式表示一次摸球中奖的概率;(2)若,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.