函数是R上的偶函数,且当时,函数的解析式为(1)求的值; (2)用定义证明在上是减函数;(3)求当时,函数的解析式;[来源
(12分) 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC; (2) AF⊥平面EDB.
(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0,求AC边上的高所在的直线方程.
已知函数f(x)=log2,(x∈(-∞,-)∪(,+∞)) (1)判断函数f(x)的奇偶性,并说明理由; (2)判断函数f(x)在区间(,+∞)上的单调性.
经测试,光线每通过一块特殊的玻璃板,其强度将损失10%,已知原来的光线强度为a,设通过x块这样的玻璃板后的光线强度为y. (1) 试写出y与x的函数关系式; (2) 通过多少块玻璃板后,光线强度削弱到原来的以下?
已知函数y=f(x)是R上的偶函数,且x≥0时,f(x)=()x-1. (1)求f(x)的解析式; (2)画出此函数的图象.