已知函数满足,求
已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系. ⑴求正三棱柱的侧棱长. ⑵若M为BC1的中点,试用基向量、、表示向量; ⑶求异面直线AB1与BC所成角的余弦值.
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是高度增加4M(底面直径不变)。 (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些,说明理由.
如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x的内接圆柱。 (1)试用x表示圆柱的体积; (2).当x为何值时,圆柱的侧面积最大,最大值是多少。
已知函数(为实数,,). (1)当函数的图像过点,且方程有且只有一个根,求的表达式; (2)若当,,,且函数为偶函数时,试判断能否大于?
已知函数 (1)画出函数f(x)在定义域内的图像 (2)用定义证明函数f(x)在(0,+∞)上为增函数