(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润元.(1)请将表示为的函数;(2)当售价为多少时,总利润取最大值,并求出此时的利润.
为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ( ξ ) ;
(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
如图,在四棱锥 P ﹣ ABCD 中,底面 ABCD 为正方形,平面 PAD ⊥ 平面 ABCD ,点M在线段PB上, PD ∥ 平面 MAC , PA = PD = 6 , AB = 4 .
(1)求证:M为PB的中点;
(2)求二面角 B ﹣ PD ﹣ A 的大小;
(3)求直线MC与平面BDP所成角的正弦值.
在 △ ABC 中, ∠ A = 60 ° , c = 3 7 a .
(1)求 sinC 的值;
(2)若 a = 7 ,求 △ ABC 的面积.
给定无穷数列 { a n } ,若无穷数列{b n}满足:对任意 n ∈ N * ,都有 | b n - a n | ≤ 1 ,则称 { b n } 与 { a n } "接近"。
(1)设 { a n } 是首项为1,公比为 1 2 的等比数列, b n = a n + 1 + 1 , n ∈ N * ,判断数列 { b n } 是否与 { a n } 接近,并说明理由;
(2)设数列 { a n } 的前四项为: a 1 =1, a 2 =2, a 3 =4, a 4 =8, b n 是一个与 { a n } 接近的数列,记集合M={x|x=b i, i=1,2,3,4},求M中元素的个数m;
(3)已知 { a n } 是公差为d的等差数列,若存在数列{b n}满足:{b n}与 { a n } 接近,且在b₂-b₁,b₃-b₂,…b 201-b 200中至少有100个为正数,求d的取值范围。
设常数 t > 2 ,在平面直角坐标系xOy中,已知点F(2,0),直线 l : x = t ,曲线 Γ : y ² = 8 x 0 ≤ x ≤ t , y ≥ 0 , l 与x轴交于点A,与 Γ 交于点B,P、Q分别是曲线 Γ 与线段AB上的动点。
(1)用t表示点B到点F的距离;
(2)设t=3, ∣ FQ ∣ = 2 ,线段OQ的中点在直线FP上,求△AQP的面积;
(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在 Γ 上?若存在,求点P的坐标;若不存在,说明理由。