(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润元.(1)请将表示为的函数;(2)当售价为多少时,总利润取最大值,并求出此时的利润.
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.
已知等差数列{an}的前5项和为105,且a10=2a5.(1)求数列{an}的通项公式;(2)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm.
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
设{an}是公比为正数的等比数列,a1=2,a3=a2+4,(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3.(1)求an;(2)求数列{nan}的前n项和Tn.