某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(Ⅰ)设所选3人中女生人数为,求的分布列及数学期望;(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
.已知函数(Ⅰ)当时,求的值域(Ⅱ)设,若在恒成立,求实数a的取值范围(III)设,若在上的所有极值点按从小到大排成一列,求证:
.(本小题满分13分)以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足,.(Ⅰ)求椭圆及其“准圆”的方程;(Ⅱ)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于、两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.
.(本小题满分13分)已知数列是各项均不为的等差数列,公差为,为其前项和.向量、满足,.数列满足,为数列的前n项和.(Ⅰ)求、和;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分13分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(本小题满分13分)已知三棱锥,平面,,,.(Ⅰ)把△(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积;(Ⅱ)求二面角的余弦值.