根据预测,某地第n(n∈N *)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n= { 5 n 4 + 15 , 1 ≤ n ≤ 3 - 10 n + 470 , n ≥ 4 ,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46) 2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
(本小题满分12分) 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D. (I)求AB的长度; (Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分10分) 已知等差数列{},为其前n项的和,=0,=6,n∈N*. (I)求数列{}的通项公式; (II)若=3,求数列{}的前n项的和.
已知函数. (I)求函数的单调区间; (Ⅱ)函数在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由; (Ⅲ)若任意的∈(1,2)且≠,证明:(注:
(本小题满分12分)已知焦点在轴上的椭圆C1:=1经过A(1,0)点,且离心率为. (I)求椭圆C1的方程; (Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与轴平行时,求h的最小值.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分别是PA、BC的中点. (I)求证:MN∥平面PCD; (II)在棱PC上是否存在点E,使得AE上平面PBD?若存在,求出AE与平面PBC所成角的正弦值,若不存在,请说明理由