(本小题满分8分)已知命题函数 在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,求实数的取值范围.
(本小题满分15分)已知二次函数满足条件:①当时,,且;②当时,;③在R上的最小值为0(1)求的解析式;(2)求最大的m(m>1),使得存在,只要,就有.
(本小题满分15分) 如图(1)所示,直角梯形中,,,,.过作于,是线段上的一个动点.将沿向上折起,使平面平面.连结,,(如图(2)). (Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出 的长;不存在,说明理由; (Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.
(本小题满分14分)设△ABC的内角A、B、C所对的边长分别为A、B、C,且成等差数列(1)求角A的值;(2)若,求的面积.
(本小题满分12分)已知函数(e为自然对数的底数)在x=2处的切线斜率为(I)求m的值;(Ⅱ)是否存在自然数^,使得函数在(k,k+l)内存在唯一的极值点?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)证明>0.
(本小题满分12分) 已知函数 (I)当1<a <4时,函数在[2,4]上的最小值为,求a; (Ⅱ)若存在x0∈(2,+∞),使得 <0,求a的取值范围.