(本小题满分12分)
已知在四棱锥中,底面是边长为4的正方形,平面⊥平面,△是正三角形, 、、分别是、、的中点.
(I)求证:平面;
(II)求平面与平面所成锐二面角的大小.
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.
(1)设,求y关于的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),年
产量不足80千件时,C(x)=2+10x(万元);当年产量不小于80千件时,
C(x)=51x+-1450(万元).通过市场分析,若每件售价为500元时,该厂当年生产
的该产品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
(本小题满分13分)
如图,四边形为正方形,⊥平面,∥,==.
(I)证明:平面⊥平面;
(II)求二面角的余弦值.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)="f" (1+x)成立,设向量a="(sinx,2)," b=(2sinx,),
c=(cos2x,1),d=(1,2)。
(1)分别求a·b和c·d的取值范围;
(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
(本小题12分)一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是、、、。现从盒子中随机抽取卡片,
⑴若一次抽取张卡片,求张卡片上数字之和大于的概率;
⑵若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率。
(本小题12分)
⑴焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程。
⑵已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程。
(本小题12分)
如图4:求的算法的
程序框图。⑴标号①处填 。标号②处填 。⑵根据框图用直到型(UNTIL)语句编写程序。
(本小题14分)
已知椭圆的一个顶点为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,
求△AOB面积的最大值.
(本小题14分)
已知函数,
(Ⅰ)求;
(Ⅱ)已知数列满足,,求数列的通项公式;
(Ⅲ)求证:.