已知向量,设函数。(1)求的最小正周期与单调递减区间。(2)在中,、、分别是角、、的对边,若的面积为,求的值
(本小题满分12分)已知椭圆:的上顶点为,且离心率为. (1)求椭圆的方程; (2)证明:过椭圆:上一点的切线方程为; (3)从圆上一点向椭圆引两条切线,切点分别为,,当直线分别与轴,轴交于,两点时,求的最小值.
(本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(1)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明); (2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.
(本小题满分12分)如图,在四棱锥中,底面是菱形,,平面,,点,分别为和中点. (1)求证:直线平面; (2)求与平面所成角的正弦值.
(本小题满分12分)已知数列中,,其前项的和为,且满足. (1)求证:数列是等差数列; (2)证明:当时,.
(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=|3x+2| (Ⅰ)解不等式, (Ⅱ)已知m+n=1(m,n>0),若恒成立,求实数a的取值范围.