设函数,. (1)当时,求与函数图象相切且与直线平行的直线方程(2)求函数的单调区间(3)是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
已知正方形ABCD的边长是13,平面ABCD外一点P到正方形各顶点的距离都为13,M、N分别是PA、BD上的点且PM:MA=BN:ND=5:8,如图. (1)求证:直线MN∥平面PBC; (2)求线段MN的长.
一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求: (1)取出的1球是红球或黑球的概率; (2)取出的1球是红球或黑球或白球的概率.
如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F. 求证:四边形BCFE是梯形.
如图,在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.
已知函数 (1)当时,求函数的单调区间; (2)若函数对恒成立,求实数的取值范围.