高中数学

已知函数 f ( x ) =│ x+1│-│ x-2│.

(1)求不等式 f ( x ) ≥1的解集;

(2)若不等式 f ( x ) x 2- x+ m的解集非空,求实数 m的取值范围.

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

n为正整数,集合 A= { α | α = t 1 , t 2 , , t n , t k 0 , 1 , k = 1 , 2 , , n } .对于集合 A中的任意元素 α = x 1 , x 2 , , x n β = y 1 , y 2 , , y n ,记

M α β )= 1 2 x 1 + y 1 - x 1 - y 1 + x 2 + y 2 - x 2 - y 2 + + x n + y n - x n - y n

(Ⅰ)当 n=3时,若 α = 1 , 1 , 0 β = 0 , 1 , 1 ,求 M α , α )和 M α , β )的值;

(Ⅱ)当 n=4时,设 BA的子集,且满足:对于 B中的任意元素 α , β ,当 α , β 相同时, M α β )是奇数;当 α , β 不同时, M α β )是偶数.求集合 B中元素个数的最大值;

(Ⅲ)给定不小于2的 n,设 BA的子集,且满足:对于 B中的任意两个不同的元素 α , β M α β )=0.写出一个集合 B,使其元素个数最多,并说明理由.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

已知函数 f x = a x g x = lo g a x ,其中 a>1.

(I)求函数 h x = f x - x ln a 的单调区间;

(II)若曲线 y = f x 在点 x 1 , f x 1 处的切线与曲线 y = g x 在点 x 2 , g x 2 处的切线平行,证明 x 1 + g x 2 = - 2 lnln a ln a

(III)证明当 a e 1 e 时,存在直线 l,使 l是曲线 y = f x 的切线,也是曲线 y = g x 的切线.

来源:2018年全国统一高考理科数学试卷(天津卷)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

已知 f x = x + 1 - ax - 1 .

(1)当 a = 1 时,求不等式 f x > 1 的解集;

(2)若 x 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = 5 - x + a - x - 2 .

(1)当 a = 1 时,求不等式 f ( x ) 0 的解集;

(2)若 f ( x ) 1 恒成立,求 a 的取值范围.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

设函数 f x = 2 x + 1 + x - 1

(1)画出 的图像;

(2)当 x [ 0 , + ) f x ax + b ,求 a + b 的最小值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知函数 f x = 2 + x + a x 2 ln 1 + x - 2 x

(1)若 a = 0 ,证明:当 - 1 < x < 0 时, f x < 0 ;当 x > 0 时, f x > 0

(2)若 x = 0 f x 的极大值点,求 a

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知斜率为 k 的直线 l 与椭圆 C    x 2 4 + y 2 3 = 1 交于 A B 两点,线段 AB 的中点为 M 1    m m > 0

(1)证明: k < - 1 2

(2)设 F C 的右焦点, P C 上一点,且 FP + FA + FB = 0 .证明: FA FP FB 成等差数列,并求该数列的公差.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知函数 f x = x - ln x

(Ⅰ)若f(x)在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f(x 1)+f(x 2)>8−8ln2;

(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

来源:2018年全国统一高考数学试卷(浙江卷)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知 f x = x + 1 - ax - 1 .

(1)当 a = 1 时,求不等式 f x > 1 的解集;

(2)若 x 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = 5 - x + a - x - 2 .

(1)当 a = 1 时,求不等式 f ( x ) 0 的解集;

(2)若 f ( x ) 1 恒成立,求 a 的取值范围.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

设函数 f x = 2 x + 1 + x - 1

(1)画出 的图像;

(2)当 x [ 0 , + ) f x ax + b ,求 a + b 的最小值.

来源:2018年全国统一高考文科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知函数 f x = a x 2 + x - 1 e x

(1)求曲线在点 0 , - 1 处的切线方程;

(2)证明:当 a 1 时, f x + e 0

来源:2018年全国统一高考文科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知斜率为 k 的直线 l 与椭圆 C    x 2 4 + y 2 3 = 1 交于 A B 两点.线段 AB 的中点为 M ( 1 , m ) ( m > 0 )

(1)证明: k < - 1 2

(2)设 F C 的右焦点, P C 上一点,且 FP + FA + FB = 0 .证明: 2 FP = FA + FB

来源:2018年全国统一高考文科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

x , y , z R ,且 x + y + z = 1 .

(1)求 ( x - 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 的最小值;

(2)若 ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - a ) 2 1 3 成立,证明: a - 3 a - 1 .

来源:2019年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

高中数学解答题