设函数 f x = 2 x + 1 + x - 1 .
(1)画出 的图像;
(2)当 x ∈ [ 0 , + ∞ ) , f x ≤ ax + b ,求 a + b 的最小值.
已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.
已知函数. (Ⅰ) 若,求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的斜率是1,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
已知数列满足,. (Ⅰ) 求数列{的前项和; (Ⅱ)若存在,使不等式成立,求实数的取值范围.
如图,在四棱锥中,底面是边长为2的正方形,且,=,为的中点. 求: (Ⅰ) 异面直线CM与PD所成的角的余弦值; (Ⅱ)直线与平面所成角的正弦值.
已知数列是公差大于的等差数列,且满足,. (Ⅰ) 求数列的通项公式; (Ⅱ)若数列和数列满足等式(),求数列的前项和.