设函数 f x = 2 x + 1 + x - 1 .
(1)画出 的图像;
(2)当 x ∈ [ 0 , + ∞ ) , f x ≤ ax + b ,求 a + b 的最小值.
观察下列等式 第一个式子 第二个式子 第三个式子 第四个式子照此规律下去(Ⅰ)写出第个等式;(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.
为培养高中生综合实践能力和团队合作意识,某市教育部门主办了全市高中生综合实践知识与技能竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的团队按照抽签方式决定出场顺序.通过预赛,共选拔出甲、乙等六个优秀团队参加决赛.(Ⅰ)求决赛出场的顺序中,甲不在第一位、乙不在第六位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的团队数记为,求的分布列和数学期望.
已知的展开式中,第项的二项式系数与第项的二项式系数之比是.(Ⅰ)求展开式中含项的系数; (Ⅱ)求展开式中系数最大的项.
已知函数(为实数,,),(Ⅰ)若, 且函数的值域为,求的表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,,,且函数为偶函数,判断是否大于?
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量件之间的关系式为: ,每件产品的售价与产量之间的关系式为: .(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.