如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.(1)若,求的值;(2)若为线段的中点,求证:为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.
某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本.统计数据如下:(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(2)在A,B,C,D,E,F六名学生中,仅有A,B两名学生认为作业多.如果从这六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量,,且(1)求角B的大小;(2)求函数的值域.
已知等差数列的前n项和为,且(1)求数列的通项公式;(2)设,求数列的前n项和Tn.
已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.
直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程.