设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.(1)求;(2)判断y=f(x)在(0,+ ∞)上的单调性;(3)一个各项均为正数的数列其中sn是数列的前n项和,求
(1)焦点在轴上的椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程;(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
已知双曲线的中心在坐标原点,焦点在轴上,离心率,虚轴长为2.(1)求双曲线的标准方程;(2)若直线与双曲线相交于两点,(均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出该定点的坐标.
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆上的点到焦点的距离的最小值为.(1)求椭圆的方程;(2)设直线过点且与椭圆相切,求直线的方程.
已知动点与平面上两定点连线的斜率的积为定值-2.(1)试求动点的轨迹方程;(2)设直线与曲线交于两点,求.
已知命题曲线与轴相交于不同的两点;命题表示焦点在轴上的椭圆.若“且”是假命题,“或”是真命题,求的取值范围.