已知斜率为 k 的直线 l 与椭圆 C : x 2 4 + y 2 3 = 1 交于 A , B 两点,线段 AB 的中点为 M 1 , m m > 0 .
(1)证明: k < - 1 2 ;
(2)设 F 为 C 的右焦点, P 为 C 上一点,且 FP ⃑ + FA ⃑ + FB ⃑ = 0 .证明: FA ⃑ , FP ⃑ , FB ⃑ 成等差数列,并求该数列的公差.
求值: .
(满分12分)已知a,b是实数,函数 和是的导函数,若在区间上恒成立,则称和在区间上单调性一致(1)设,若和在区间上单调性一致,求b的取值范围;(2)设且,若和在以a,b为端点的开区间上单调性一致,求|a―b|的最大值
.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。(1)求这名射手在射击比赛中命中目标的概率;(2)求这名射手在比赛中得分的数学期望。
(满分12分)某项实验,在100次实验中,成功率只有10%,进行技术改革后,又进行了100次试验。若要有97.5%以上的把握认为“技术改革效果明显”,实验的成功率最小应为多少?(要求:作出)(设
(满分12分) 已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求c的取值范围