已知函数 f x = a x , g x = lo g a x ,其中 a>1.
(I)求函数 h x = f x - x ln a 的单调区间;
(II)若曲线 y = f x 在点 x 1 , f x 1 处的切线与曲线 y = g x 在点 x 2 , g x 2 处的切线平行,证明 x 1 + g x 2 = - 2 lnln a ln a ;
(III)证明当 a ≥ e 1 e 时,存在直线 l,使 l是曲线 y = f x 的切线,也是曲线 y = g x 的切线.
椭圆G:的两个焦点为是椭圆上一点,且满.(1)求离心率的取值范围;(2)当离心率取得最小值时,点到椭圆上点的最远距离为.①求此时椭圆G的方程;②设斜率为的直线与椭圆G相交于不同两点,为的中点,问:
已知圆C:,直线:.(1)当为何值时,直线与圆C相切;(2)当直线与圆C相交于A、B两点,且时,求直线的方程.
已知椭圆(a>b>0)的离心率, 直线与椭圆交于P,Q两点, 且OP⊥OQ(如图) .(1)求证:;(2)求这个椭圆方程.
已知定点,动点在直线上运动,当线段最短时,求的坐标.
(本小题满分14分)已知函数和的图象关于原点对称,且. (Ⅰ)求函数的解析式; (Ⅱ)解不等式; (Ⅲ)若在上是增函数,求实数的取值范围.