某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率
甲、乙两名射手各打了10发子弹,其中甲击中环数与次数如下表
乙射击的概率分布列如表
(1)若甲,乙两人各打一枪,求共击中18环的概率及p的值; (2)比较甲,乙两人射击水平的优劣.
某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率; (3)求这支篮球队在6场比赛中胜场数的期望和方差.
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为. (1)求乙至多击中目标2次的概率; (2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.
某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案: 方案1:运走设备,此时需花费4000元; 方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元; 方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元. (1)试求方案3中损失费X(随机变量)的分布列; (2)试比较哪一种方案好.
第16届亚运会于2010年11月12日在广州举办,运动会期间来自广州大学和中山大学的共计6名大学生志愿者将被随机平均分配到跳水、篮球、体操这三个比赛场馆服务,且跳水场馆至少有一名广州大学志愿者的概率是. (1)求6名志愿者中来自广州大学、中山大学的各有几人? (2)设随机变量X为在体操比赛场馆服务的广州大学志愿者的人数,求X的分布列及均值.