(本小题满分12分)在国家法定工作日内,每周满工作量的时间为40小时,若每周工作时间不超过40小时,则每小时工资25元;如因需要加班,超过40小时的每小时工资为50元.某公务员在一周内工作时间为小时,但他须交纳个人住房公积金和失业保险(这两项费用为每周总收入的10%).试分析算法步骤并画出其每周净得工资元的算法的程序框图.(注:满工作量外的工作时间为加班)
已知向量. (1)当时,求的值; (2)设函数,已知在△ ABC中,内角A、B、C的对边分别为,若,求()的取值范围.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*) 满足anbn+1-an+1bn+2bn+1bn=0. (1)令cn=,求数列{cn}的通项公式; (2)若bn=3n-1,求数列{an}的前n项和Sn.
已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
已知命题:任意,有,命题:存在,使得.若“或为真”,“且为假”,求实数的取值范围.
(本小题满分12分)已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在区间上是减函数,求实数a的取值范围; (Ⅲ)当时,函数图象上的点都在所表示的平面区域内,求数a的取值范围