在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。(I)求椭圆的方程;(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使?若存在,求出直线斜率的取值范围;若不存在,请说明理由:(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。
如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=. (1)求证:PD⊥面ABCD; (2)求二面角A-PB-D的大小[
已知椭圆的长轴长为10,两焦点的坐标分别为 (1)求椭圆的标准方程(2)若P为短轴的一个端点,求三角形的面积
(本小题满分14分)直线l过点(1,0),与抛物线交于A(x1,y1),B(x2,y2)两点,抛物线的顶点是O. (ⅰ)证明:为定值; (ⅱ)若AB中点横坐标为2,求AB的长度及l的方程.
(本小题满分14分)已知命题:“函数在上单调递减”,命题:“,”,若命题“且”为真命题, 求实数的取值范围。
.(本小题满分14分) 一个口袋内装有大小相同的6个小球,其中2个红球,记为A1、A2,4个黑球,记为B1、B2、B3、B4,从中一次摸出2个球. (Ⅰ)写出所有的基本事件; (Ⅱ)求摸出的两个球颜色不同的概率.