在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
设等差数列{an}的前n项和为Sn,已知a3=5,S3=9. (1)求首项a1和公差d的值; (2)若Sn=100,求n的值.
已知数列的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1). (1)求{an}的通项公式; (2)令Tn=Sn,是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求m的值;若不存在,说明理由.
若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”. (1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和; (2)在“凸数列”{an}中,求证:an+3=-an,n∈N*; (3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.
已知an=n×0.8n(n∈N*). (1)判断数列{an}的单调性; (2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.
已知数列的通项公式an=(n∈N*),求数列前30项中的最大项和最小项.