(本小题满分12分)学校餐厅每天供应1000名学生用餐,每星期一有A、B两样特色菜可供选择(每个学生都将从二者中选一),调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B,而选B菜的,下周星期一则有30%改选A,若用A、B分别表示在第n个星期一选A、B菜的人数。(1)试以A表示A;(2)若A=200,求{A}的通项公式;(3)问第n个星期一时,选A与选B的人数相等?
已知函数.(e是自然对数的底数) (1)判断在上是否是单调函数,并写出在该区间上的最小值; (2)证明:
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y. (1)设,求y关于的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小?
已知向量. (1)当时,求的值; (2)设函数, 求的值域.
已知椭圆的中心在原点O,焦点在轴上,过右焦点F的直线与右准线交于点D,与椭圆交于A、B两点,右准线与轴交于C点,若成等差数列,且公差等于短轴长的.(1)求椭圆的离心率; (2)若的面积为,求椭圆的方程.
设函数为实数。 (Ⅰ)已知函数在处取得极值,求的值; (Ⅱ)已知不等式对任意都成立,求实数的取值范围。