在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率(2)该顾客获得的奖品总价值(元)的概率分布列和数学期望。
一种化学名为“尼美舒利”的儿童退热药,其药品安全性疑虑引起社会的关注,国家药监局调查了这种药的100个相关数据,绘制成如图所示的频率分布直方图,再对落在两组内的数据按分层抽样方法抽取8个数据,然后再从这8个数据中抽取2个,(1)求最后所得这两个数据分别来自两组的概率? (2)由所给的频率分布直方图估计样本数据的中位数?(精确到0.01)
在△ABC中,三内角A、B、C及其对边a、b、c,满足, (Ⅰ)求角的大小(Ⅱ)若=6,求△ABC面积.
以下茎叶图记录了甲、乙两组五名同学的植树棵数,乙组记录中有一个数据模糊无法确认,在图中以X表示。 (Ⅰ)如果X=7,求乙组同学植树棵数的平均数和方差; (Ⅱ)如果X=8,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为18或19的概率。
设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
已知圆,圆,动点到圆,上点的距离的最小值相等. (1)求点的轨迹方程; (2)点的轨迹上是否存在点,使得点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.