在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率(2)该顾客获得的奖品总价值(元)的概率分布列和数学期望。
△ABC中,BC=7,AB=3,且=. (1)求AC;(2)求∠A.
已知函数 (1)判断函数在上的单调; (2)若在上的值域是,求的值.
已知是奇函数,且当时,,求时,的表达式。
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
画出散点图,并通过散点图确定变量y对x是否线性相关; (2)如果y对x有线性相关关系,求回归直线方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
已知,,。求证中至少有一个不少于0。