一条直线经过点P(3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x-4y+3=0的倾斜角的2倍;(2)与x、y轴的正半轴交于A、B两点,且△AOB的面积最小(O为坐标原点).
观察以下各等式:,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点.(1)求a和b的值;(2)求f(x)的单调区间.
椭圆的两个焦点分别为,离心率。(1)求椭圆方程;(2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段中点的横坐标为,求直线倾斜角的取值范围。
设函数的图象在点处的切线方程为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。
已知是首项为1,公差为2的等差数列,表示的前项和。(1)求及;(2)设数列的前项和为,求证:当都有成立。