设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
求与双曲线=1共渐近线,且过点A(2,-3)的双曲线方程.
已知双曲线的渐近线的方程为2x±3y=0,(1)若双曲线经过P(,2),求双曲线方程;(2)若双曲线的焦距是2,求双曲线方程;(3)若双曲线顶点间的距离是6,求双曲线方程.
已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是x-2y=0.(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.
由双曲线=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标.
已知双曲线C:-=1(0<<1)的右焦点为B,过点B作直线交双曲线C的右支于M、N两点,试确定的范围,使·=0,其中点O为坐标原点.